Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
نویسندگان
چکیده
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the “roles” of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/datadriven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.
منابع مشابه
Mixed Qualitative/Quantitative Dynamic Simulation of Processing Systems
In this article the methodology proposed by Li and Wang for mixed qualitative and quantitative modeling and simulation of temporal behavior of processing unit is reexamined and extended to more complex case. The main issue of their approach considers the multivariate statistics of principal component analysis (PCA), along with clustered fuzzy digraphs and reasoning. The PCA and fuz...
متن کاملSpatial and temporal modeling of large-scale brain networks
Title of dissertation: SPATIAL AND TEMPORAL MODELING OF LARGE-SCALE BRAIN NETWORKS Mahshid Najafi, Doctor of Philosophy, 2017 Dissertation directed by: Professor Jonathan Z. Simon, Department of Electrical and Computer Engineering Professor Luiz Pessoa, Department of Psychology The human brain is the most fascinating and complex organ. It directs all our actions and thoughts. Despite the large ...
متن کاملDynamic Behavioral Mixed-Membership Model for Large Evolving Networks
The majority of real-world networks are dynamic and extremely large (e.g., Internet Traffic, Twitter, Facebook, ...). To understand the structural behavior of nodes in these large dynamic networks, it may be necessary to model the dynamics of behavioral roles representing the main connectivity patterns over time. In this paper, we propose a dynamic behavioral mixed-membership model (DBMM) that ...
متن کاملA state-space mixed membership blockmodel for dynamic network tomography
In a dynamic social or biological environment, the interactions between the underlying actors can undergo large and systematic changes. The latent roles or membership of the actors as determined by these dynamic links will also exhibit rich temporal phenomena, assuming a distinct role at one point while leaning more towards a second role at an another point. To capture this dynamic mixed member...
متن کاملNeuro-ACT Cognitive Architecture Applications in Modeling Driver’s Steering Behavior in Turns
Cognitive Architectures (CAs) are the core of artificial cognitive systems. A CA is supposed to specify the human brain at a level of abstraction suitable for explaining how it achieves the functions of the mind. Over the years a number of distinct CAs have been proposed by different authors and their limitations and potentials were investigated. These CAs are usually classified as symbolic and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011